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Abstract

MISO is an optimization framework for solving computationally expensive,
mixed-integer, black-box, global optimization problems. MISO uses surrogate models
to approximate the computationally expensive objective function. Hence, derivative
information, which is generally unavailable for black-box simulation objective func-
tions, is not needed. MISO allows the user to choose the initial experimental design
strategy, the type of surrogate model, and the sampling strategy. This code manual
describes the MATLAB code and how you can use MISO to solve your optimization
problems.

1 Introduction

This documentation accompanies the MATLAB implementation of the MISO (Mixed-
Integer Surrogate Optimization) framework. We implemented and tested MISO in MAT-
LAB 2012a [6]. MISO is a derivative-free surrogate model algorithm that aims at solving
optimization problems of the following type:

min f(x) (1a)

−∞ < xli ≤ xi ≤ xui <∞, i = 1, . . . , d (1b)

xj ∈ Z,∀j ∈ I ⊂ {1, 2, . . . , d}, (1c)

where xli and xui are the variable lower and upper bounds of variable xi, d is the problem
dimension, and I contains the indices of the variables that have integer constraints.

The optimization problem has the following characteristics:

• The objective function is computationally expensive to compute. Obtaining a single
function value is extremely time consuming and takes several minutes to hours.

• The objective function is a black box. No analytical description of the function is
available, it is, for example, a computer simulation.
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• Derivatives of f(x) are not available.

• The objective function is deterministic. The value of f(x) is the same for the same
variable input vector.

• Some variables have integer constraints: mixed-integer variables.1

• The objective function is multimodal. The domain scientists may have some idea
of whether or not there are several basins of attraction. For black-box problems, it
is not possible to tell a priori what the shape of the objective function is, and in
order to avoid becoming trapped in a local minimum, we have to assume that f(x)
is multimodal and apply a global optimization algorithm.

The goal is to find the global minimum of f(x) by doing only very few evaluations
of f(x) in order to keep the optimization time acceptable. If your objective function
evaluations are computationally inexpensive, MISO will not be an efficient solver. We
developed MISO for problems whose function evaluation time allows only for several
hundred evaluations.

In this code companion, we focus mostly on explaining what the individual m-function
do and how to use MISO for solving your optimization problems. We recommend reading
the paper “MISO: mixed-integer surrogate optimization framework” by J. Müller (2015,
to appear in Optimization and Engineering, DOI: 10.1007/s11081-015-9281-2) for further
explanations and references.

MATLAB version and toolboxes: MATLAB 2012(a) and newer (tested until 2014(b));
Optimization toolbox; Global optimization toolbox; Statistics and Machine Learning
toolbox.

Make sure that the MISO code directory is known to the MATLAB search path. To test
the algorithm, type in the MATLAB command window

testdriver

This runs a computationally cheap test problem and should finish successfully.

We organized this code manual as follows. Section 2 is a brief overview of how surrogate
model algorithms work in general and radial basis functions (RBFs). The individual
m-functions of the algorithm are described in Section 3. MISO comes with several
options for the initial experimental design, the type of RBF surface that can be used
as surrogate for the expensive objective function, and sampling strategies (i.e., how to
iteratively select new trial points for doing the expensive evaluations). These settings
are defined by input parameters that are described in Section 3.1. The output of the
algorithm is described in Section 4. An example of how to define your own optimization
problem and how to call the algorithm is given in Section 5.

Lastly, should you encounter difficulties or bugs, please feel free to contact me at

juliane.mueller2901@gmail.com
1Note that MISO works also for problems with only continuous variables. Selected sampling strategies

work also for problems with only integer variables.
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2 Surrogate Model Algorithm and Radial Basis

Functions

Surrogate model algorithms generally follow the steps described in Algorithm 1 and
illustrated in Figure 1.

Algorithm 1 General Surrogate Model Algorithm

1: Create an initial experimental design and do the expensive objective function evalu-
ations at the selected points. Fit the surrogate model.

2: Use the information from the surrogate model to select the point xnew for doing the
next expensive function evaluation. Do the expensive evaluation at xnew: fnew =
f(xnew).

3: Update the surrogate model and go to Step 2.
4: Stop when the stopping criterion is satisfied and return the best solution found.

First, an initial experimental design is created and the computationally expensive
objective function is evaluated at the selected points. In general, any initial design
strategy may be used, but it has to be ensured that there are sufficiently many points
to compute the parameters of the chosen surrogate model. The objective function value
predictions of the surrogate model at unsampled points are used to select the next
evaluation point. After the new function value has been obtained, the surrogate model
is updated if the stopping criterion has not been satisfied (for example, the budget of
function evaluations has not been exhausted) and a new point is selected for evaluation.
Otherwise, the algorithm stops and returns the best solution found.

Figure 1: Illustration of the surrogate model algorithm steps described in Algorithm 1.

Although in general any type of surrogate model can be used within our MISO framework,
we implemented MISO with RBF models only. Since we consider deterministic objective
functions, we do not want to use non-interpolating surrogate models such as polyno-
mial regression models or multivariate adaptive regression splines (MARS, [1]) because
we would like that the surrogate model makes accurate predictions at already evaluated
points. One interpolating surrogate model is kriging [4, 5]. Kriging has the advantage
that it gives an uncertainty estimate together with the objective function value predic-
tion. However, for large dimensional problems (d > 10), the computation time of the
kriging model parameters increases significantly, rendering the model inefficient. Hence,
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we implemented in MISO three RBF model types (cubic, linear, thin-plate spline). The
RBF interpolant is defined as

s(x) =
n∑
ι=1

λιφ(‖x− xι‖) + p(x), (2)

where φ(·) is the radial basis function (types defined in Table 1), xι, ι = 1, . . . , n, denotes
the points at which the objective function value is known (already evaluated points),
and p(·) denotes the polynomial tail whose order depends on the chosen RBF type (see
Table 1). The parameters λι ∈ R, ι = 1, . . . , n, and the parameters of the polynomial tail
β0, β1, . . . ∈ R are determined by solving the following linear system of equations[

Φ P
PT 0

] [
λ
β

]
=

[
F
0

]
, (3)

where Φιν = φ(‖xι − xν‖), ι, ν = 1, . . . , n, 0 is a matrix with all entries 0 of appropriate
dimension, and

P =


xT1 1
xT2 1
...

...
xTn 1

 , λ =


λ1
λ2
...
λn

 β =


β1
β2
...
βd
β0

 , F =


f(x1)
f(x2)

...
f(xn)

 . (4)

The matrix in (3) is invertible if and only if rank(P) = d+ 1 [7].

Table 1: Radial basis function types and their corresponding minimal degree µp of p(x),
where Πd

µp := {0} for µp = −1.

Name φ(r) = µρ

Linear r 0
Cubic r3 1
Thin plate spline r2 log r 1

3 Description of Individual m-functions

3.1 miso.m

The main function from which to run the algorithm is miso.m. miso.m takes seven (7)
input arguments shown in Table 2, out of which only the first is mandatory. There are
default values for the remaining inputs.

[x opt, f opt] = miso(’datafile’, maxeval, ’surrogate’, n start, ’init design’, ’sampling’,
own design)

The first input argument (datafile), is a string with the name of the m-file in which your
optimization problem is defined. We recommend using one of the examples that come
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with MISO and using it as template for writing your own datafile. If you want to give
only selected input arguments to miso.m, use [ ] for the arguments that you want the
algorithm to assign default values to. The individual input options that can be given by
the user are defined in the following subsections.

miso.m first checks which input arguments are defined and assigns default values to input
arguments that were not defined by the user. miso.m then generates an initial experi-
mental design (’init design’) (or uses the user’s specified design own design), after which
the desired sampling strategy (’sampling’) is called. The algorithm keeps sampling until
the maximum number of function evaluations (maxeval) has been reached. The sampling
strategy outputs an updated structure array Data which will then be saved as sol in the file
results.mat. A progress plot that shows the development of the objective function value
will be drawn. miso.m’s outputs are x opt (the best point found during the optimization
procedure) and f opt (the best objective function value encountered).

3.1.1 Input: datafile

The datafile must have as output argument a structure array Data (function call: function
Data = your filename). Within the datafile, you have to define the lower (Data.xlow) and
upper (Data.xup) variable bounds for each variable, the problem dimension (Data.dim),
the variable indices of integer (Data.integer) and continuous (Data.continuous) variables,
and the function handle for the objective function (Data.objfunction). For example,

Data.xlow = [-10, 0, 5];
Data.xup = [0, 20, 15];
Data.dim = 3;
Data.integer = [1, 2]; (variables 1 and 2 have to be integers)
Data.continuous = 3; (variable 3 is a continuous variable).
Data.objfunction = @(x) function handle(x).

The objective function must be defined such that the input variable vector x is a row vector
and it must return a scalar value, i.e., each variable input vector within the variable lower
and upper bounds must be evaluable and the function value has to be in R \ {∞,−∞}.

3.1.2 Input: maxeval

maxeval has to be an integer number. It defines the maximum number of allowable function
evaluations. In order to fit an RBF model, we need at least d + 1 function evaluations,
and therefore maxeval has to be larger than d+ 1. If maxeval is not given by the user, the
default value maxeval = 50d is used. The algorithm stops after the maximum number of
function evaluations has been reached.

3.1.3 Input: surrogate

The input surrogate has to be a string that defines the type of radial basis function that
is used. The options are ’rbf c’ (cubic RBF), ’rbf l’ (linear RBF), and ’rbf t’ (thin-plate
spline RBF). If surrogate is not given by the user, the default value ’rbf c’ is used.
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Table 2: Parameter inputs for miso.m.

Input # Name Description

1 datafile string, mandatory, name of the file containing the user’s problem
definition

2 maxeval integer, optional, maximum number of allowed function evalua-
tions, default 50d

3 surrogate string, optional, name of the surrogate model to be used, default
’rbf c’

4 n start integer, optional, number of points in initial experimental design,
default 2(d+ 1)

5 init design string, optional, name of initial experimental design, default ’slhd’

6 sampling string, optional, strategy for iteratively selecting the sample points,
default ’cptvl’

7 own design matrix, optional, partial or complete initial experimental design
points, default [ ]

3.1.4 Input: n start

The input argument n start is an integer that defines the number of points to be used
in the initial experimental design. If no additional initial design points are given by the
user as input (init design=’slhd’ or init design=’lhs’), n start has to be at least d + 1 (the
minimum number of points needed to fit an RBF model). The default value is n start =
d+1.

3.1.5 Input: init design

init design defines the type of initial experimental design. The options are ’slhd’ (sym-
metric Latin hypercube design), lhs (MATLAB’s out-of-the-box Latin hypercube design
lhsdesign.m), and ’own’ (which indicates that you supply a set of points as initial exper-
imental design in the input argument ’own design’). The default value is ’slhd’. If you
have a good idea of where interesting staring points might be located, you can set the
init design option to ’own’ and give a matrix of initial design points in the input argument
own design (see also Section 3.1.7). The number of points you supply does not necessarily
have to be d+ 1. If you supply fewer than d+ 1 points, we generate the remaining points
by the symmetric Latin hypercube sampling.

3.1.6 Input: sampling

The input sampling defines the strategy according to which we iteratively select a new
sample point. In MISO, we select one new sample point in each iteration. The sampling
strategy options are

• ’cp’: Coordinate perturbation strategy. Generate a large set of candidate points by
adding random perturbations to randomly selected variable values of the best point
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found so far. Generate a second set of candidate points by uniformly selecting points
from the whole variable domain. Round integer variables. Score each candidate
point based on its function value predicted by the RBF and its distance to the
previously evaluated points. Select the point with the best score.

• ’tv’: Target value strategy. Define a target value for the objective function and
minimize a bumpiness measure in order to select the point in the variable domain
at which it is most likely that this target value will be assumed. Use a genetic
algorithm to minimize the bumpiness measure to obtain an integer-feasible solution
(uses MATLAB’s ga.m).

• ’ms’: Minimum point of surrogate surface strategy. Use a genetic algorithm (ga.m)
to find the minimum point of the surrogate surface and use this point as new sam-
ple point for the expensive evaluation. Multi-level single linkage and a genetic
algorithm ensure that the minimum point will satisfy the integer constraints. Note,
this method may get trapped in a local minimum of the surrogate surface which is
not necessarily a stationary point of the true function.

• ’rs’: Random generation of candidate points. This method is similar to cp, but
instead of perturbing only a subset of the variables of the best point found so
far, we perturb all variables of the best point found so far. We round the integer
variables. No uniformly generated candidate points are used. Score each candidate
point based on its function value predicted by the RBF and its distance to the
previously evaluated points. Select the point with the best score.

• ’cptv’: A combination of cp and tv. Whenever one sampling method fails to find
improved solutions in several consecutive iterations, we switch to the other sampling
method.

• ’cptvl’: A combination of cp, tv, and a local search (MATLAB’s fmincon.m) on the
continuous variables. If neither cp nor tv are able to find improved solutions, we
do a local search. We fix the integer values of the best point found so far and
use fmincon.m to minimize the true function f(x) with respect to the continuous
variables only.

Which sampling method should you use? In our numerical study, we found that ’cptv’
and ’cptvl’ (which is the default) perform generally best. ’cptvl’ tends to find higher
accuracy solutions due to the local search on the true surface.

All sampling strategies can be used for problems with only continuous variables. For
problems with only integer variables, the sampling methods tv, cptv, ms, and rs can be
used. cp and cptvl can not be used for pure integer problems. Moreover, MISO will not
work for pure integer problems in which the number of possible solutions is less than the
maximum number of allowed function evaluations because the algorithm will not evaluate
the same point more than once. Note, however, that we developed MISO primarily for
mixed-integer problems and we did not do a numerical study in which we compare MISO
with other algorithms developed for continuous and integer problems, respectively.
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3.1.7 Input: own design

If you would like to give the algorithm sample points to include in the initial experimental
design, set init design = ’own’. The input own design has to be a matrix with d (dimension)
columns and m (number of user given sample points) rows, i.e., each row is a sample point
to be included in the initial design. If m < d+ 1, the algorithm will use the ’slhd’ design
in order to select the remaining starting points (d + 1−m additional points in case you
have not defined n start, max{d + 1 − m, n start} additional points in case you defined
n start in the input).

3.2 slhd.m

slhd.m selects n start points as initial experimental design by generating a symmetric Latin
hypercube deign [10]. The input parameter is the structure array Data that contains the
information about how many starting points are needed and what the problem dimension
is. The output is a matrix with d (dimension) columns and n start rows.

3.3 cp.m

This function is used when sampling = ’cp’ (the coordinate perturbation sampling
strategy). First, various parameters and counters are defined, for example, a perturba-
tion range for generating candidate sample points and the maximum number of failed
improvement trials after which the perturbation range is decreased. At the beginning of
each iteration, the parameters of the selected RBF type are computed (calling function
rbf params.m).

In order to create the candidate points, a perturbation probability is defined. The
perturbation probability decreases as the number of sample points increases, and thus the
search becomes more local as the maximum number of allowed evaluations is approached.
Candidate points are generated in two ways. One group is generated by perturbing
the variable values of the best point found so far with the current perturbation range.
The variables to be perturbed are selected with the computed perturbation probability,
i.e., not all variables are perturbed. The second group of candidate points is generated
by uniformly selecting points from the whole variable domain. We round the integer
variable values such that every candidate point satisfies the integrality conditions. We
want to select exactly one of the candidate points for doing the next expensive function
evaluation (call function compute scores.m).

We do the expensive objective function evaluation at the selected sample point. If the
function value is better than that of the current best point, we update the best point
found so far. Depending on whether or not the new evaluation point is an improvement,
the counter for consecutively successful (or failed) trials is updated. If the newly selected
point was an improvement, we check if the integer variable values changed from the
previous best point. If it is the case, we update the surrogate model parameters using the
new point, and we do a candidate search only on the continuous variables. We update
the surrogate model parameters whenever we have obtained a new data point.
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After the threshold for the number of consecutively successful improvement trials has
been exceeded, we double the perturbation range for generating candidate points. If the
number of consecutively failed trials exceeds its threshold, we half the perturbation range.
cp.m updates the structure array Data and returns it to miso.m.

3.4 tv.m

tv.m is used when the target value strategy (see also [2]) is chosen as sampling strategy.
We first set parameters for the sampling strategy such as a sample sequence and a weight
pattern for computing target values. As in cp.m, we compute the parameters of the RBF
model at the beginning of each iteration. Based on the iteration number, we select the
sample stage which is either “Inf-step”, “cycle-step/global search”, or “cycle-step/local
search”. In each of the sample stages, a computationally cheap auxiliary problem is
solved (see [3]). In the cycle steps, we minimize a “bumpiness measure” (see bumpi-
ness measure.m). If the solution of the auxiliary problem is not too close to an already
evaluated point, we do the expensive simulation at this solution. If the solution is too
close to a previously evaluated point, we do the expensive simulation at a random point
selected from the whole variable domain. tv.m updates the structure array Data and
returns it to miso.m.

3.5 ms.m

ms.m is the sampling function for using the minimum point of the surrogate surface as
new sample point. At the beginning of each iteration, the parameters of the surrogate
model are computed. We use the multi-level single-linkage algorithm (mlsl.m) in order to
find the various minima of the surrogate surface. We discard all minima that are too close
to previously evaluated points and do the expensive function evaluation at the remaining
points. If there are no points remaining, we randomly select a point from the whole
variable domain. We update the Data structure array in each iteration and return it to
miso.m after the maximum number of allowed function evaluations has been reached.

3.6 rs.m

rs.m is the sampling strategy in which we create candidate points by adding random
perturbations to all variables of the best point found so far. For this sampling strategy,
we set an initial perturbation range and a minimal perturbation range. We have to set a
parameter that determines how many iteratively failed (or successful) improvement trials
are allowed before decreasing (or increasing) the perturbation range.

In each iteration, we compute the parameters of the surrogate model. We generate a
set of candidate points by adding random perturbations to all variables of the best point
found so far using the current perturbation range. We use the function compute scores.m
to select the best candidate point. We do the expensive objective function evaluation at
the selected point and we update the best point found so far if necessary. We update
the counters for iteratively failed and successful trials. If the failure counter exceeds
its threshold, we half the perturbation range. Once the minimum perturbation range
has been reached, we assume that we are in a local minimum and start the search from
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scratch, i.e., we create a new initial experimental design and use the random perturbation
search anew. We iterate until the maximum number of allowed function evaluations has
been reached.

3.7 cptv.m

cptv.m is a hybrid of the sampling strategies cp.m and tv.m. Similarly as for cp.m and
tv.m, we have to first define parameter values for the threshold of failed and success-
ful improvement trials, etc. In each iteration, we first compute the parameters of the
surrogate surface. We start the iterative sampling with the cp-method (for details, see
Section 3.3), i.e., we use the cp-sampling until we have reduced the perturbation range
to its predefined minimal value. Once this value has been reached, we go to the tv sam-
pling method (for details, see Section 3.4). We stay in the tv sampling stage until the
counter for failed improvement trials has reached its threshold, and we then return to the
cp sampling method. We cycle between cp and tv sampling until the maximum number
of allowed function evaluations has been reached.

3.8 cptvl.m

cptvl.m is a hybrid of the sampling strategies cp, tv, and MATLAB’s built-in gradient-
based minimization function fmincon.m. cptvl.m starts as cptv.m with the cp search. Once
cp does not yield any improved solutions, we switch the search to tv. After the tv search,
we go back to the cp search. At the end of the second cp search, if neither the previous
tv search nor the second cp search was successful, we go to the local search. Otherwise
we cycle between cp and tv until cp and then tv are consecutively unsuccessful. For the
local search, we use MATLAB’s function fmincon.m on the continuous variables only. We
fix the integer variables of the best point found so far and use the continuous variables as
starting guess for fmincon. fmincon searches on the true objective function and it is likely
that this search will consume the remaining available function evaluations. The goal of
this final local search is to find at least a local minimum that is associated with the fixed
integer variables and to obtain a higher accuracy solution. cptvl.m returns the updated
Data structure array to miso.m. Depending on the maximum number of allowed function
evaluations and the sample stages, it is possible that the local search will not be entered.

3.9 rbf params.m

rbf params.m is used to compute the parameters of the chosen RBF model. This function is
called by all sampling strategies. As input, we need the Data structure array (in particular
the sample points and their function values) and the rbf flag that tells us which type of
RBF model is desired (cubic, linear, or thin-plate spline). The function returns the RBF
parameters λi, i = 1, . . . , n and β0, β1, . . . , βd.

3.10 rbf matrices.m

We need the function rbf matrices.m whenever the target value strategy is used for selecting
sample points, i.e., in tv.m, cptv.m, and cptvl.m. When using the target value strategy,
we define a target value for the objective function and we solve an optimization problem
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in order to find the point in the variable domain where it is “most likely” that the target
value will be assumed. We find this point by minimizing a bumpiness measure for which
we need the RBF matrices Φ and P in equation (3). In rbf matrices.m, we first compute
the pairwise distances of all already sampled points to each other, we compute the RBF
value of the distances based on the type of RBF model used, and we use these value to
set up the matrices Φ and P.

3.11 rbfvalue.m

rbfvalue.m is called whenever the target value sampling strategy is used (tv.m, cptv.m,
and cptvl.m). It computes the radial basis function value (not the predicted objective
function value) with the chosen RBF type. The input is the distance ‖xν − xι‖2 between
the points xν and xι, and a flag (rbf flag) for the RBF type. The output is the RBF value
φ(‖xν − xι‖2).

3.12 rbf prediction.m

rbf prediction.m is used only in connection with the target value sampling strategy (tv.m,
cptv.m, cptvl.m). It computes the predicted objective function value for a given input vec-
tor. The function’s input arguments are the point(s) at which the objective function value
should be predicted, the Data structure array, the RBF parameters, and the indicator for
the type of RBF model to use. The output is the objective function value prediction.

3.13 compute scores.m

compute scores.m is used by the sampling strategies that use random perturbations to
create candidate points (cp.m, cptv.m, cptvl.m, rs.m). The input parameters are the Data
structure array, the matrix of candidate points, the weight for the surrogate score, the
RBF parameters, and the RBF type.

We discard all candidate points that are too close (closer than a preset threshold)
to already evaluated points. We use the surrogate model to predict the objective
function values of all remaining candidate points. This is computationally cheap. We
scale the values to [0,1], where the lowest predicted function value gets 0 and the
largest prediction gets 1 (see also [8]) (surrogate score). We compute the distance
of each candidate point to the set of already evaluated points and scale the distance
values to [0,1], where the largest distance obtains 0 and the smallest distance obtains
1 (distance score). We compute a weighted sum of the scores and select the candi-
date point with the best (lowest) score as new sample point. The scoring weights
are repeatedly cycling through a pattern defined at the beginning of the sampling
strategy. A large weight for the surrogate score puts more emphasis on the predicted
objective function value. The predicted objective function values tend to be lower
in the vicinity of already evaluated points that have a low objective function value.
Thus, the search is more local. If the weight for the distance score is large, points that
are far away from already sampled points are preferred, and thus the search is more global.
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3.14 inf step.m

The inf step is used only in connection with the target value sampling strategy (tv.m,
cptv.m, cptvl.m). We set the target value for the objective function to −∞ and solve the
global optimization problem of minimizing the bumpiness measure (see also [3]).

3.15 bumpiness measure.m

bumpiness measure.m is needed only when the target value sampling strategy is used (tv.m,
cptv.m, cptvl.m). The input variables are the vector at which the bumpiness of the surface
should be evaluated, the structure array Data, the target value for which the bumpiness
is to be computed, and the RBF parameters and matrices. The output is the bumpiness
value. For details of the bumpiness computation, see [2].

3.16 mlsl.m

mlsl.m is used only when the sampling strategy is the minimum point of the surrogate
surface. We use the multi-level single-linkage algorithm [9] in order to find the points in
the variable domain where the surrogate model may have local and global optima. The
input parameters are the structure array Data and the RBF parameters. The output is a
matrix with new sample points at which the expensive objective function will be evaluated
and the RBF model’s prediction of these function values.

3.17 newp.m

newp.m is called by mlsl.m and checks whether or not a newly suggested point is a new
local minimum of the response surface.

4 MISO Output

miso.m returns the best point found during the optimization run and the corresponding
function value. It also generates a file results.m that contains the complete sample history
and the settings used by MISO. In order to access the data, type

load results.mat

into the command prompt in MATLAB (make sure the results.mat file is located in a
directory known to the MATLAB search path). A structure array sol will appear in the
workspace. The fields of sol are described in Table 3.

5 Example

In this section, we show an example of how to define an optimization problem and how
to call miso.m to solve it. You must provide a data file (see Section 3.1.1 for the details).
The data file contains all information about the optimization problem. The MISO codes
come with some test functions, for example, datainput hartman3.m. We recommend using
this file as a template for defining your own problem. Section 3.1.1 shows the mandatory
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Table 3: Fileds of the structure array sol.

Field name Description

xlow Vector with variable lower bounds
xup Vector with variable upper bounds
integer Vector with indices of integer variables
continuous Vector with indices of continuous variables
objfunction Name of objective function handle
maxeval Maximum number of allowed function evaluations
surrogate Name of the used surrogate model
init design Name of the initial experimental design strategy
sampling Name of the sampling strategy
number startpoints Number of points in the initial experimental design
tol Minimum distance between sample points
m Number of function evaluations done
S Matrix (m × dimension) with evaluated points
Y m-vector with objective function values
T m-vector with evaluation times of each point
fbest Best function value found during optimization
xbest Best point found during optimization
total T Total time needed by optimization algorithm
own design User given (partial) initial experimental design

problem specifications that must be given for all problems.

When defining the objective function, you have to include the command

global sampledata

This global variable collects the sample points, function values, and function evaluation
times. Define your problem such that the output of your objective function definition is
a scalar value y. To time the function evaluation, use the command

fevalt = tic;

before the expensive simulation is started. After the simulation is finished and your value
y has been computed, use the command

t = toc(fevalt);

Last, collect the new data in the global variable sampledata by using the command

sampledata = [sampledata; x(:)’, y, t];

Hence, your data input file should look similar to the code shown in Figure 2. The red
boxes indicate the code lines that have to be included in the datafile.
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Figure 2: Example input datafile for 3-dimensional Hartman function.
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After you have defined your optimization problem, you need to decide about the settings
of the algorithm (input options in Section 3.1).

For using default options, simply call MISO by typing into the command prompt, for
example,

[x opt, f opt] = miso(’datainput hartman3’)

Make sure that the directory of the MISO files is known to MATLAB’s search path and
that your data file is in the same directory.

If you want to specify a maximum number of allowed function evaluations, say 200, call
MISO as follows:

[x opt, f opt] = miso(’datainput hartman3’, 200)

If you want to use your own initial experimental design without generating any additional
points, you have to define a matrix own design of appropriate dimensions.

own design = [ 0, 0.2, 0.9; 0, 0.1, 0.45; 1, 1, 1; 1, 0.75, 0.99];

If you do not provide (dimension + 1) points in the own design matrix, the missing points
will be generated by the slhd method. We let MISO know about our own design by setting
the initial experimental design strategy to ’own’ and supplying the matrix own design as
input argument (note that the input arguments [ ] are used to tell the algorithm to use
default values for the corresponding inputs, here ’surrogate’, n start, and ’sampling’):

[x opt, f opt] = miso(’datainput hartman3’, 200, [ ], [ ], ’own’, [ ], own design)

After the algorithm has finished, you will find the file results.mat in the current MATLAB
directory (see Section 4 for details). You will also see a progress plot of the development
of the objective function value (similar to Figure 3).
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Figure 3: Progress plot for the test example datainput hartman3.m
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6 Code Structure

We outline the code structure here. Functions in subtrees indicate that they are called
by a higher level function. The letters (a) - (f) indicate the sampling options.

miso.m

slhd.m / lhsdesign.m

(a) cp.m

rbf params.m

compute scores.m

(b) tv.m

rbf params.m

rbf matrices.m

rbfvalue.m

inf step.m

rbfvalue.m

rbf prediction.m

bumpiness measure.m

rbfvalue.m

rbf prediction.m

(c) ms.m

rbf params.m

mlsl.m

rbf prediction.m

newp.m

(d) rs.m

slhd.m / lhsdesign.m

rbf params.m

compute scores.m

(e) cptv.m

rbf params.m

compute scores.m

rbf matrices.m

rbfvalue.m

inf step.m

rbfvalue.m

rbf prediction.m

bumpiness measure.m

rbfvalue.m

rbf prediction.m

(f) cptvl.m

rbf params.m

compute scores.m

rbf matrices.m

rbfvalue.m

inf step.m

rbfvalue.m
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rbf prediction.m

bumpiness measure.m

rbfvalue.m

rbf prediction.m
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